Online Jupyter @ Google: https://colab.research.google.com/notebooks/welcome.ipynb
Cool module syllabus with many links to resources
https://www.cse.iitk.ac.in/users/piyush/courses/ml_autumn18/index.html
http://deeplearning.cs.cmu.edu/ & github: https://github.com/Eurus-Holmes/cmu11-485-785
and related teaching resources: https://github.com/ADGEfficiency/teaching-monolith
A brief introduction to the Tidyverse: https://www.youtube.com/watch?v=6Q_uHqxhpMI&t=3369s
Data and code: https://github.com/russey/tour_of_the_tidyverse
Nice course from Penn State : https://online.stat.psu.edu/stat414/lesson/introduction-stat-414
Measure of association: https://peterstatistics.com/CrashCourse/index.html
Association for categorical data :
EDA
Pandas on kaggle https://www.kaggle.com/kashnitsky/topic-1-exploratory-data-analysis-with-pandas
Measure of association: https://peterstatistics.com/CrashCourse/index.html
Lots of resources and tutorials:
https://github.com/tommyod/awesome-pandas
Tips and tricks
https://gardnmi.github.io/blog/jupyter/pandas/2020/10/18/stack-overflow-tips-and-tricks.html
https://ramorel.github.io/posts/r-v-python/